An Integrated Decision Support System for Developing Rural Eco-Environmental Sustainability in the Mountain-River-Lake Region of Jiangxi Province, China

Final Report

Submitted to

United Nations Development Program

Prepared by

Center for Studies in Energy and Environment University of Regina, Canada

April 2006

PROJECT LEADER:

Guohe Huang

RESEARCH PERSONNEL (Alphabetically):

Bing Chen

Elisabeth Mance

Hengliang Li

Hua Zhang

Li He

Na Li

Ning Zhang

Renfei Liao

Songlin Nie

Wei Sun

Xianghui Nie

Xiaodong Zhang

Xiaosheng Qin

Yanpeng Cai

Yiyong Liu

Yuefei Huang

LOCAL REASEARCH PARTICIPANTS (Alphabetically)

Dongming Xie

Meiying Liu

Shengming Ren

Wenqing Shen

Xiaohong Wang

Xiaohua Deng

Xinghua Le

Yu Fang

Zhen Jin

Zheng Song

Zhewen Fan

Zhiping Long

Zongxun Liu

Zuozhen Qiu

ACKNOWLEDGEMENT

We would like to express our sincere thanks to Xiaohong Wang, Meiying Liu, Zhewen Fan, Yu Fang, Shengming Ren, Dongming Xie, Xinghua Le, and Wenqing Shen from the Office of the Mountain-River-Lake Development Committee of Jiangxi Province, Zhen Jin and Zuozhen Qiu from the City of Jian, and Zheng Song, Zhiping Long, Zongxun Liu, and Xiaohua Deng from the County of Yongxin in Jiangxi Province, China. Their kind help and assistance in data acquisition and field survey are essential for the success of this project. We also appreciate the discussions and interactions with them during the course of this project.

Our further appreciation goes to Dr. Ning Zhang and Ms. Kang Li from the China International Center for Economic and Technical Exchanges (CICETE) for their continuous support and constructive suggestion in various aspects of this project.

We gratefully acknowledge the help of Chun Chen and Xueyuan Shi from the Huazhong University of Science and Technology, and Dr. Xiaokang Su and Lin Shi from the Hunan University in China for providing assistance in field experiments during completing this project.

Special thanks are also due to the research personnel in the Environmental Informatics Laboratory (EIL) at the University of Regina in Canada, for their help and support during the processes of data analysis, modeling development, and software design. They include Qianguo Lin, Baiyu Zhang, Yongping Li, Bin Luo, Hui Yu, Hongwei Lu, and Kai An and many others. The friendly and supportive atmosphere inherent to the EIL contributed essentially to the success of this project.

EXECUTIVE SUMMARY

Sustainable development has been widely recognized across the world as an optimum means for harmonizing human society and natural systems. It is being extensively examined in China to mitigate the intensive conflict between economic development and environmental protection. In the past two decades, most of the ecosystems in China have been impaired along with the accelerating economic development. Numerous events and studies have proved that the destruction of natural resources and deterioration of the environment could be disastrous for future eco-society development. In the Mountain-River-Lakes (MRL) project area in Jiangxi Province, China, the population growth and economic development have exerted significant pressure on the local ecosystem. Since a large number of counties in this area are among the poorest regions in China, to boom the local economy has become the priority in the provincial strategic plan. The accelerating development could bring potential threats to the deteriorating ecosystem if there is a lack of more effective management for protecting the environment. However, satisfying the socio-economic needs of the area without compromising the environmental quality or ecological health is a challenging task. It is thus desired that more studies on the links between economic development, poverty alleviation, and environmental protection be advanced for supporting rural sustainability development.

Over the past decades, many efforts have been made to clarify the concept of sustainable development and to develop related theoretical and practical options. Most of these efforts focused on developing well-designed decision support system to facilitate planning and decision-making of maintaining rural economic and environmental sustainability. However, there is still a lack of effort in developing effective tools that can integrate simulation of the social-economic behaviors and environmental processes, optimization of resources allocation, visualization of spatial and temporal dimensions of socio-economic and environmental interactions, and analysis of associated uncertainties into a general framework. This leads to difficulties for decision makers to gain an in-depth insight into complicated interrelationships between economic development, poverty alleviation and environmental protection. Therefore, this project aims to develop

a GIS-aided dynamic distributive database and a multi-objective decision-making system to balance the conflicts between rural economic growth and environmental protection for supporting the local sustainable development. The Yongxin County was selected as the pilot demonstration area. In detail, the major tasks of the project include:

- (1) Characterizing the study system through public involvement, field surveys, and data acquisition, as well as analyzing the collected data through multi-parameter methodologies.
- (2) Exploring water resource availability through distributed hydrological modeling.
- (3) Developing an integrated optimization system that comprehensively considers socio-economic and environmental factors to support decision making for local sustainable development.
- (4) Developing a GIS-aided database system to dynamically integrate various information and data to graphically interpret the planning alternatives and the proposed decisions.
- (5) Designing a user-friendly interface to realize the participation of stakeholders and the public during planning and decision-making processes; this helps achieve the goal of economic and environmental sustainability for the area.

The system coordinates economic development and environmental protection in an effort to promote poverty alleviation. Through the use of information collection and management, public participation, process simulation, and system optimization, a variety of scenarios are compared. The basis of this system relies on the integration of a number of methodologies and techniques in order to provide an important framework for the realization of poverty alleviation, environmental protection and economic development. The case study in the Yongxin County provides a good opportunity to study the conflicting relationship between socio-economic and ecological development. The developed system provides effective solutions to address the above issue and generate reliable and feasible supports for the related decision making processes, in order to harmonize the future development of the local economy and ecosystem.

This report consists of 7 chapters. Chapter 1 is an introduction. Chapter 2 provides the background of this project and the study area. Chapter 3 presents the project framework. A distributed hydrological modeling system for supporting the planning is

given in Chapter 4. Chapter 5 describes optimization approaches for rural eco-environmental planning. Chapter 6 provides an integrated decision support system for supporting rural sustainable development in the Yongxing County. Finally, Chapter 7 is devoted to a summary of this project and some recommendations based on the study efforts.

TABLE OF CONTENTS

CHAPTER ONE - INTRODUCTION	1
CHAPTER TWO - PROJECT BACKGROUND	6
2.1. WATERSHED BACKGROUND	7
2.2. GENERAL CONDITIONS OF THE PROJECT AREA	
2.3. Environmental Quality Standards	
2.4. Public Survey and Result Analysis	
2.4.1. Questionnaire Survey	
2.4.2. Survey Process	
2.4.3. Result Analysis	
CHAPTER THREE – SYSTEM ANALYSIS	46
CHAPTER FOUR – HYDROLOGICAL ANALYSIS	51
4.1. STATEMENT OF PROBLEMS	52
4.2. REVIEW OF HYDROLOGIC MODELS	54
4.2.1. Lumped hydrologic models	54
4.2.2. Distributed hydrologic models	
4.3. CHALLENGES IN HYDROLOGICAL MODELING	
4.4. DEVELOPMENT OF A DISTRIBUTED MODELING SYSTEM	59
4.5. CLASSIFICATION OF SUBWATERSHEDS	63
4.5.1. Rationality of classification	63
4.5.2. Review of cluster analysis	65
4.5.3. Fuzzy C-mean	
4.6. University of Regina Hydrological Model	
4.6.1. Evapotranspiration	
4.6.2. Snowmelt	70
4.6.3. Interception	71
4.6.4. Infiltration	71
4.6.5. Groundwater flow	
4.6.6. Internal Routing	
4.6.7. External routing	
4.7. Data Preparation	
4.8. CALIBRATION AND VERIFICATION	
4.8.1. Calibration Method	
4.8.2. Model Calibration	
4.8.3. Model Verification	
4.8.4. Model Predication	
4.8.5. Result and Discussion	
4.9. Summary	
CHAPTER FIVE – SYSTEM OPTIMIZATION	108
5.1. MODEL INTRODUCTION FOR DECISION MAKERS	109
5.1.1. Statement of problems	109

5.1.2 Methodology	112
5.1.3. Model development and results analysis	
5.2. RESULTS OF IMOP MODEL FOR DECISION MAKERS	
5.3. DECISION SUPPORT MODEL FOR FARMERS	205
5.3.1. Introduction	205
5.3.2. Model Development	206
5.3.3. Case study	213
5.3.4. Result analysis	214
5.4. Summary	232
CHAPTER SIX – DRSD: DECISION SUPPORT SYSTEM FOR F	RURAL
SUSTAINABLE DEVELOPMENT	
6.1. Overview	235
6.2. DRSD Framework	237
6.2.1. General Structure	238
6.2.2. Graphical User Interface	240
6.2.3. Inference Engine	242
6.2.4. Geographic Information System	244
6.2.5. Knowledge Base	244
6.3. USER INTERFACE AND OPERATION	245
6.3.1. Interface for Decision Makers	247
6.3.2. Interface for Farmers	247
6.4. DIGITAL YONGXIN	256
6.4.1. Data Management	256
6.4.2. User Interface and Operation	258
6.5. Summary	269
CHAPTER SEVEN – CONCLUSIONS	270
REFERENCES	274
APPENDIX	278
Public Survey	278
CONSTRAINTS FOR CCMIL P MODEL	289

LIST OF TABLES

Table 2.1	Tributaries of the He River within Yongxin County	14
Table 2.2	Population statistics for the Yongxin County	15
Table 2.3	Division of levels for the Yongxin County (1983)	16
Table 2.4	Land use statistics for the Yongxin County	17
Table 2.5	Polluting elements from the industrial wastewater for the Yongxin County .	18
Table 2.6	Polluting elements from the agricultural wastewater recorded at Jian City	19
Table 2.7	Pollutant contaminant discharge (1985)	20
Table 2.8	Pollutant contaminant discharge (1985)	21
Table 2.9	Soil erosion statistics for the Yongxin County	22
Table 2.10	Education levels and ages for the investigated persons	26
Table 2.11	Priorities for the primary industry determined by different decision makers	329
Table 2.12	Priorities for local main industries determined by different decision mak	ers
		30
Table 2.13	Priorities for the tertiary industry determined by different decision makers	31
Table 2.14	Basic information for user layer	32
Table 2.15	Other related statistical information for user layer	43
Table 4.1 (Comparison of Operational Snowmelt Models	73
Table 4.2	Five self-constructed sites	91
Table 4.3 (Comparison of computed and observed daily streamflow 1	04
Table 5.1	Living Expenses	16
Table 5.2	Population Status	17
Table 5.3 I	Health Expenses	18
		219
Table 5.5 I	Livestock Expenses	20
Table 5.6	Basic Crop Expenses	221
Table 5.7 (Crops Culture Expenses	222
Table 5.8 I	Fertilizer Expenses	223
Table 5.9	Education Expenses 2	224
Table 6.1	Example Database Structure	246

LIST OF FIGURES

Figure 2.1	The priorities for various criteria determined by decision makers	27
Figure 2.2	The population structure for the investigated family	33
Figure 2.3	Main planted crops	34
Figure 2.4	Main cash crops	35
Figure 2.5	Average productivity of paddy rice (half a kilogram/acre)	36
Figure 2.6	Agricultural tax paid in grain for each family (half a kilogram/year)	37
Figure 2.7	Cost for hiring labors for each family (RMB/year)	38
Figure 2.8	Total income for each family (RMB/year)	39
Figure 2.9	Main sources of income	40
Figure 2.10	Saving conditions for each family	41
Figure 2.11	Investment on breeding for each family	42
Figure 3.1	Interrelationships among various system components	48
Figure 4.1	Conceptual figure of the hydrologic cycle	61
Figure 4.2	Conceptual flow chart for vertical water budget	62
Figure 4.3	Slow storage concept	77
Figure 4.4	The digital elevation model of the Heshui basin	79
Figure 4.5	The stream network of the Heshui Basin	80
Figure 4.6	The land use in the Heshui basin	81
Figure 4.7	The soil distribution in the Heshui basin	82
Figure 4.8	Γhe comprehensive classification in the Heshui basin	83
Figure 4.9	The design chart of the wired for real-time flow rate measurement	84
Figure 4.10	The profile of the monitoring sites	85
Figure 4.11	Installation and maintenance of the monitoring site	86
Figure 4.12	2 The time evolution of the averaged precipitation over Ji'an (1951 to	2100)
(National C	limate Center, 2006)	93
Figure 4.13	The time evolution of the averaged temperature change over Ji'an (19	951 to
2100) (Natio	onal Climate Center, 2006)	93
Figure 4.14	URHM Interface	95
Figure 4.15	Modeling calibration for Sanwan #1	96

Figure 4.16 Modeling calibration for Sanwan #2	97
Figure 4.17 Modeling calibration for Chengdu	98
Figure 4.18 Modeling calibration for Heshan	99
Figure 4.19 Modeling calibration for Dongfeng	100
Figure 4.20 Modeling calibration for Beimen Station	101
Figure 4.21 Modeling verification for Beimen Station	102
Figure 4.22 Modeling prediction for Beimen Station for 2020	103
Figure 5.1 Optimized planting agricultural areas by CCMILP	128
Figure 5.2 Optimized forestry areas by CCMILP	129
Figure 5.3 Optimized fishery areas by CCMILP	130
Figure 5.4 Optimized areas for fruit trees and mulberry by CCMILP	131
Figure 5.5 Optimized industrial output values by CCMILP	132
Figure 5.6 Optimized output values for merchandize and services by CCMILP	133
Figure 5.7 Optimized output values from other industries by CCMILP	134
Figure 5.8 Optimized poultry feeding amount by CCMILP	135
Figure 5.9 Optimized livestock breeding amount by CCMILP	136
Figure 5.10 Optimized tourists number by CCMILP	137
Figure 5.11 Optimized planting areas of agricultural planting by CCMOMILP	149
Figure 5.12 Optimized net benefits from traditional industry by CCMOMILP	152
Figure 5.13 Optimized expanded areas of forestland and fishery fields by CCM	OMILP
	153
Figure 5.14 Net benefit from retailing industry by CCMOMILP	154
Figure 5.15 Optimized net benefit from other industries by CCMOMILP	155
Figure 5.16 Optimized tourism persons by CCMOMILP	156
Figure 5.17 Optimized horticulture planting areas by CCMOMILP	157
Figure 5.18 Optimized numbers of cultured poultry by CCMOMILP	158
Figure 5.19 Optimized numbers of breezed livestock by CCMOMILP	159
Figure 5.20 Optimal wastewater treatment scenarios by CCMOMILP	160
Figure 5.21 Optimized net benefits from other tertiary industries by ICCMILP	164
Figure 5.22 Optimized net benefits from retails industry by ICCMILP	165
Figure 5.23 Optimized orchard area by ICCMILP	166

Figure 5.24 (Optimized mulberry area by ICCMILP	167
Figure 5.25	Optimized fishery area by ICCMILP	168
Figure 5.26	Optimized primary wastewater treatment amount by ICCMILP	169
Figure 5.27	Optimized secondary wastewater treatment amount by ICCMILP	170
Figure 5.28	Optimized tertiary wastewater treatment amount by ICCMILP	171
Figure 5.29	Optimized total benefits by the four models	172
Figure 5.30	Total economic benefits of the Yongxin County from year 2007 to 2022	177
Figure 5.31	Yearly economic benefits of the Yongxin County under ENP scenario	178
Figure 5.32	Yearly economic benefits of the Yongxin County under SUD scenario	179
Figure 5.33	Yearly economic benefits of the Yongxin County under ECP scenario	180
Figure 5.34	Early rice's area in 2021 under SUD scenario	181
Figure 5.35	Late rice's area in 2022 under SUD scenario	182
Figure 5.36	Middle reason rice's area in 2022 under SUD scenario	183
Figure 5.37	Melon's area in 2022 under SUD scenario	184
Figure 5.38	Soybean's area in 2022 under SUD scenario	185
Figure 5.39	Potato's area in 2022 under SUD scenario	186
Figure 5.40	Rapeseed's area in 2022 under SUD scenario	187
Figure 5.41	Other crops' area in 2022 under SUD scenario	188
	Net output of mining and quarrying in Hechuan Township under S	
scenario		189
Figure 5.43	Net output of manufacturing in Hechuan Township under SUD scenario	190
Figure 5.44	Net output of construction in Hechuan Township under SUD scenario	191
Figure 5.45	Net output of transport and communications in Hechuan Township un	nder
SUD scenario	0	192
	Net output of other industries in Hechuan Township under SUD scen	
		193
Figure 5.47	Area of fruit garden and mulberry in Hechuan Township under SUD scen	ario
		194
Figure 5.48	Scale and net income of silkworm production of each township in 2	006
under SUD s	cenario	195
Figure 5 49	Expansion scale and net income of woodland in Hechuan Township up	nder

SUD sceanrie	0	196
Figure 5.50	Scale and net income of fishery in Hechuan Township under SUD s	scenario
		197
Figure 5.51	Wastewater treatment in the Yongxin County under ENP scenario	198
Figure 5.52	Wastewater treatment in the Yongxin County under SUD scenario	199
Figure 5.53	Wastewater treatment in the Yongxin County under ECP scenario	200
Figure 5.54	Yearly COD discharge in the Yongxin County under the three scenar	rios 201
Figure 5.55	Yearly nitrogen losses in the Yongxin County under the three scenario	ios. 202
Figure 5.56	Yearly phosphorus losses in the Yongxin County under the three so	enarios
		203
Figure 5.57	Yearly water resources consumption in the Yongxin County under the	he three
scenarios		204
Figure 5.58	Comparison of living expenses by four different scenarios	225
Figure 5.59	Comparison of amusement expenses by four different scenarios	226
Figure 5.60	Comparison of business expenses by four different scenarios	227
Figure 5.61	Comparison of crop expenses by four different scenarios	228
Figure 5.62	Comparison of livestock expenses by four different scenarios	229
Figure 5.63	Comparison of education expenses by four different scenarios	230
Figure 5.64	Comparison of health expenses by four different scenarios	231
Figure 6.1 D	RSD Technical Route	239
Figure 6.2 G	eneral Structure of the DRSD	241
Figure 6.3 In	nstallation and Welcome Interfaces of the DRSD	248
Figure 6.4 M	fain Interface for Decision Makers	249
Figure 6.5 E	xample Input Interfaces for Decision Makers	250
Figure 6.6 E	xample Operating Interfaces for Decision Makers	251
Figure 6.7 E	xample Output Interfaces for Decision Makers	252
Figure 6.8 M	Iain Interface for Farmers	253
Figure 6.9 E	xamples of Input Interface for Farmers	254
	Examples of Output Interface for Farmers	
_	Digital Yongxi Illustration (1) – Water System	
Figure 6.12	Digital Yongxi Illustration (2) – Soil	260

Figure 6.13 Digital Yongxi Illustration (3) – Vegetation	261
Figure 6.14 Digital Yongxi Illustration (4) – Land Use	262
Figure 6.15 Digital Yongxi Illustration (5) – Finance	263
Figure 6.16 Digital Yongxi Illustration (6) Fiscal Expenditure	264
Figure 6.17 Digital Yongxi Illustration (7) – Commodity and Investment	265
Figure 6.18 Digital Yongxi Illustration (8) Gross Value of Industrial Output	266
Figure 6.19 Digital Yongxi Illustration (9) – Agricultural Yield and GDP	267
Figure 6.20 Digital Yongxi Illustration (10) Others	268